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defining connectedness in the stratifications f1 and p2. 
In the example under consideration, after reduction the manifold V,, is five-dimensional, 

the manifolds VI and V, are three-dimensional, and the base V is two-dimensional. The distribu- 
tion A extended over the vector fields Y,and Y,is two-dimensional and the distributions Al, A? 
and A,,,defined by the operators alan,aiaz, and al&, respectively, are one-dimensional. The 
three Pfaff equations presented above define the distribution A. The second and third of them 
define the distribution AI, and the first and third, the distribution As. 
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CONDITIONS FOR FINITENESS OF THE NUMBER OF INSTABILITY ZONES 
IN THE PROBLEM OF NORMAL VIBRATIONS OF NON-LINEAR SYSTEMS* 

A.L. ZHUPIEV and YU.V. MIKHLIN 

Conservative non-linear systems with two degrees of freedom that allow 
of normal vibrations with rectilinear trajectoriesinconflguration space 
areexamined. The normalvibrationsofnon-linear systems are ageneralization 
fornormal (principal) vibrationsoflinearsystems/l/. Thevalueofsuch 
solutions is determinedbythe factthatthe resonancemodes are close tonormal 
vibrations for small external periodic effects. 

A number of recent papers (/2--5/etc.) are devoted to the analysis 
of normal vibrations. Within the framework of the stability problem to 
a first approximation, or normal vibrations, conditions are obtained 
for which the number of instability zones in the system parameter space 
is finite. The eigenfunctions and eigenvalues corresponding to the zone 
boundaries are determined. 

1. Let the motion of a conservative system be determined by the equations 

Zi" + dII/dXi = 0 (i = i, 2) 

where II (zl, I*) is a positive-definite potential. 
We assume that the system allows normal vibrations I,= Czf(C is a constant) 

are described in /l, 3, 5/. Rotation of the coordinate axes can always result in 
in the form ts= 0, and a system potential in the form 

H(Il, 2‘) = 2 (lill‘ +zz'mg* ejzl'+ 5 z*'Pi (zI) 
i-2 bo i-3 

(1.1) 

Such systems 
a solution 

The condition for the existence of the solutions mentioned aH(z,.O)/dz,=O is satisfied 
identically. 

Motion in time along the normal vibrations trajectory is described by a second-order equa- 
tion 

z" + an (z, O)/& = 0, I ss z, (1.2) 

where the first integral (the energy integral) has the form 

~'~/2 + II (I, 0) = h (1.3) 
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The orbital stability of the rectilinear vibrations mode is related to variations in y 
orthogonal to the trajectory. To a first approximation, the equation describing the motion 
in the orthogonal direction has the form 

p" + y(8%I [r, Oli&$) = 0 P.9 

Conditions for the finiteness of the number of instability zones are obtained in /6/ for 
equations of the form (1.4). Namely, periodic potentials u(t) of the Schrijdinger equation 

-I-dWt* + fJ (019 = np 
(in the system under consideration y-b= -@II(+,O)l&,? cm= -2~) have just n finite farbidden 
bands (instability zones) if the equation Q'-I~=~-- admits of a solution of the form 
x-P - fp'iwp * where Z, is a constant, and p is a polynomial in e of degree n with variable 
coefficients. The equation to determine the polynomial p is written in the following form 

. . . 
P - I (u - e) p’ - 2u’p = 0 (l-5) 

It is best to use the well-known Law of motion in the normal form z(t) to solve the problem, 
and to obtain an equation with regular singularities instead of an equation with periodic 
coefficients. In place of t we introduce a new independent t ("algebraization in the Ince 
sense" /7/j by using relationships (l-2) I ,11.X) and the equation t“* = -(@I (z.@/&%) z', which 
follows from il.Z>. 

In place of (1.5) we now obtain the equation 

2p"(h--n(a,O))+3p~(--)+ p'(- d'*;$")~4~)+2p&~=0 (1.6) 

where the pxime denotes differentiation with respect to o. Substituting 

p= 5 CLrfz]ek 11.71 
k-0 

into (1.6) and grouping terms containing identical powers of c, we obtain a problem in the 
eigenvalues cri,ci. Since the potential U(z,O) and the derivatives of the potential in (1.6) 
are polynomials in 2, the function a&(x) must also be sought in the form of a polynomial 2. 

Omitting the awkward intermediate calculations I we present just the final results for 
certain classes of systems. 

For a system "linear with cubes" fa,~O,a,~OO,a+O,~~~OO, all the remaining 411 @i coef- 
ficients vanish) the condition for the existence of the solution (1.7) has the form 

et - n (a + 1) a4 (!.a) 

This result is evident since the variational equation in this case is the Lam& equation. 
For a system "linear with cubes and a fifth degree" (111#014#~01~~ot*#~,~~0,~b#00, 

the remaining coefficients vanish] I the appropriate conditions have the form 

8, f 2n fR + r> B&* c, = dn (I + if lz*, 4a$o,o, - n&'+ 8&== 0, 0.91 

For a system "lineax with cubes and squares" (a171:Ora,i0,cr,~0,c7i:0, ~#O~t,+0, the remain- 
ing ~i.ei coefficients vanish), we obtain 

C,' n (n + i) 01, .?I = n (I& + 1) a#, 03% = 4I$", (MO) 

2. To clarify the sense of the relationships cl.@-_[l.lot, we apply Ince algebraization 
directly to the variational equation 11.4) ~ We consequently obtain a generalized Lams equa- 
tion, namely an equation of the Fuchs class whose exponents of the singularities equal 0 and 
4. For a definite symmetry in the arrangement of the singularities and a symmetry of the 
auxiliary parameters, this equation is reduced to a generalized Lam& equation with a lower 
number of singularities by a quadratic transformation. 

The simplest equation that can be obtained in this manner is the standard Lam6 equation 
in algebraic form with real coefficients 

$f* [f - 9) (9 - b"] + y's {&a - OS- bf) - y (n (n + 13 z* -2) = 0 f2.f) 

The coefficient of #"has the meaning of the kinetic energy of the transformed system, 
which vanishes twice per period at the amplitude values I= fo for the periodic regime under 
consideration. Consequently, without loss of generality, we assume that cr>O,IsI&o and either 

b= <O, or b*>G. 
Let ur write the eigenfunctions and eigenvalues of problems determining the stability 

boundaries to a first approximation in the case of n isntability zones in the order of increas- 
ing growth of the number of zeros of the eigenfunctions 8% ==Ot f, 2. 

The following intermediate notation is introduced here 
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The eigenfunctions and eigenvalues have the following form iC is an arbitrary corstant. 

We note that the intervals 

correspond to the instability domains. 
Equation (2.1) corresponds to (1.4) forthe system "linear with cubes" (in the case of 

finite zones) if 

hf 61 - - a%‘; 8Jar = -k 
aJar = -as - bB; e,iq = n fn -I- 11; Z=Z 

A shift along the real axis z=Q+~, where p -((~~$.b2)/2)'~~ results in a variational 
equation for the system "linear with cubes and squares" (the case of a finite number of in- 
stability zones) for 

h/a,= -db’ + pL’ (a2 f b2) - p’; 2&-( = --x -I- p2” (n -I- $1 
aJu, = 2 {al f b*); e&r = 2pn In + If 
a$ar = 4y; e+Ja,= n in 4- 51; z = z:! 

Equalities (1.10) hence follow. 
BY using the quadratic transformation r=z,Z- a we obtain a variational equation for the 

system "linear with cubes and a fifth power" (the cake of a finite number of instability zones) 

2~ (o* - bP); cb/ae = 4 (&a (n + I) - h) 
50’ - bt; eJ4, = -8an (n -I- 1) 

J = r, 

Equalities (1.9) hence follow. 
The eignefunctions and eigenvalues are transformed correspondingly. 
It is interesting that in the last case, unlike those preceding, only the instability 

zones bounded by the eigenfunctions having an even number of zeros are conserved. The remain- 
ing instability zones shrink to a line. In particular, the first, ordinarily the widest, in- 
stability domain (as for instance in the Mathieu equation) shrinks into a line. 

If the equalities (1.8)-(1.10) are only satisfied approximately, then there is an infinite 
number of instability zones; however* except for those extracted above, they are ail "narrowf' 
in a definite sense since they shrink to a line when conditions (1.8)--11.10) are satisfied. 

An an illustration, a plane entirely elastic vibrational loop with two degrees of freedom 
/8/ is considered. Problems of rod dynamics, guy-rope structures with lumped elements, etc. 
can result in such kinds of models.We considertheplane transverse vibrationsof twosinglepoint 
masses interconnected by a linear spring with stiffness c1 and length L, in the equilibrium state, 
and connected to fastening points by Linear springs with stiffness q and lengths 1 in the 
equilibrium state. It is assumed that the springs are prestrained in such a manner that 
constant forces 2' (tensile or compressive) are applied at the fastening points. The Hamiltonian 
of the system is 

Here si arethetransverse displacements of the mass. 
Retaining terms containing just the first, third, and fifth degrees in z1,z3 in the 

equations of motion, we arrive at the following equations 

We use the notation 

T/l = T,, T/L = $, c,lo/l = Y~, c&~IL = y2, (l/L)? = a 

and consider the antiphase vibrations mode I,= -rr, Changing to the new variables 
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s = (z, -zz)/(2Z), Y = (z1+zr)/(21), we obtain an equation describing the motion in the mode Y== 0,z = 

z 0) (analogous to (1.2)) and an equation governing the orbital stability to a first approx- 
imation (analogous to (1.4)), which have the following form 

2" + 2a*z + 44.15 + 6&z! = 0 

y" + 2 (eO + e& + c,+) y = 0 
(I, = r,/2 + '(1. a, = ~118 + y,o, 06 = --y,/16 - Zy,o" 
c0 = 7112, cI = 3~~14, c,= -lSy,/i6 

In this case conditions (1.9) result in the relationships 

3 = A' (1 + '3~,). 15 = 4N (1 + 32y,o) 

8 (rr + 2r,)(i + 6~~) (1 + 32~) + (i + 8~~)s = 4h (i + 32~)' 
ys - yte/yr, N = n (n + 1) 

Here n is the number of bounded instability zones n== O,i, Z,... 
For instance, let n= 1. Then there should be (r = 7/16,yt = 1116, 40(r, + 27%) + 6 = 25h. 
Near the values of the system parameters and the energy h that satisfy the above relation- 

ships, all except n instability zones are "narrow" since they shrink to a line in the case 
when the relationships are satisfied exactly. This also refers to the first parametric re- 
sonance zone, which is ordinarily assumed to be "wide". 

REFERENCES 

1. ROSENBERG R.M. and HSU C-S., On the geometrization of normal vibration of non-linear systems 
having many degree of freedom. Trans. International Sympos. on Non-linear Vibrations, 
vo1.1, Izdat. Akad. Nauk UkrSSR, 1963. 

2. PECELLI G. and THOMAS E.S., An example of elliptic stability with large parameters. Lame's 
equation and the Arnold-Moser-Russmann criterion. Quart. Appl. Math., Vo1.36, No.2, 1978. 

3. PECELLI G. and THOMAS E.S. Normal modes uncoupling and stability for a class of non-linear 
oscillators, Quart. Appl. Math., Vo1.37, No.3, 1979. 

4. MONTH L.A. and RAND R.H., An application of the Poincar& map to the stability of non-linear 
modes, Trans. ASME, J. Appl. Mech., Vo1.47, No.3, 1980. 

5. ZHUPIEV A.L. and MIKHLIN YU.V., Stability and bifurcation of normal vibrations modes of 
non-linear systems. PMM, Vo1.45, No.3, 1981. 

6. Theory of Solitons. Inverse Problem Method. Nauka, Moscow, 1980. 
7. INCE E.L., Ordinary Differential Equations /Russian translation/. Nauchn.-Tekh. Izdat. 

Ukrainy, Khar'kov, 1939. 
8. STARZHINSKII V.M., Applied Methods of Non-linear Vibrations. Nauka', Moscow, 1977. 

Translated by M.D.F. 

PMM U.S.S.R.,Vo1.48,N0.4,pp. 489-492,1984 0021-8928/84 $lO.OO+O.OO 
Printed in Great Britain 01985 Pergamon Press Ltd. 

ON THE EXTREMALITY HYPOTHESIS OF STABLE RESONANCE MOTIONS* 

G.V. KASATKIN 

On the basis of a proposed approximate method of determining the mean 
values of functions of the coordinates and time on almost-integrable 
trajectories of dynamic systems, the force function and kinetic energy 
are averaged in the following problems: the motion of a material point 
in the neighbourhood of triangular points of libration of the plane 
circular restricted three-body problem, the motion of a physical pendulum 
with a rapidly oscillating point of suspension in the neighbourhoods of 
the lower and upper equilibrium positions. Preference is shown for the 
following hypotheses: the minimum of the averaged potential (V.V. Beletskii 
hypothesis), kinetic, and total energy of the mechanical system at stable, 
isolated, synchronous motions. 

The extremal principle proposed in the form of the V.V. Beletskii hypothesis /2, 3/ is 
of special interest in investigations of the extremal properties of stable resonance (syn- 
chronous) motions: The function 
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